You can’t plan a battle without a map of the territory, yet every day marketers fumble through defining their brand strategy without a map of their competitive landscape. Topographical intelligence has been one of the deciding factors in every major conflict. Making decisions without a map is like playing chess without seeing the board. Once you have a map you can see the position of the pieces and where they can move to, which is fundamentally what strategy is about.
What is Meme Mapping?
Meme mapping is a marketing technique that involves identifying and analyzing the associations, ideas, and cultural references (referred to as "memes") that consumers have with a brand, or within an industry, in order to inform and guide brand positioning and messaging. By creating a "map" of these memes, marketers can make more strategic decisions about when to differentiate their brand from competitors, or copy from them, so that they better resonate with their target audience. Meme mapping starts by building a "swipe file" of industry creative examples, tagging and coding them to identify patterns, and testing which memes work best with a particular audience.
The technique works like this:
- Build a Swipefile
- Tag Memes
- Identify Patterns
- Test Creatives
We’ll get into that, but first some context on what makes Meme Mapping important.
Monopoly of the Mind
Brands are built up of associations in consumer’s brains, that guide them towards the right purchase. People look for sensory cues to determine if they’re buying the right product, and to regulate how they feel post-purchase. Nescafe is known for cheap, instant, coffee, and it’s red, whereas for Nespresso its George Clooney, dark colors, and those neat little pods. These units of information we recognize from culture – ‘memes’ – help us sort products into categories. Marketers play to these stereotypes to attract the right customers, and avoid disappointing the wrong ones.
If a product departs entirely from the expectations of the product category – for example a country music bar playing hip hop – consumers will be confused and less likely to buy. If bad fit customers get confused by your mixed signals and accidentally buy, they’ll regret their purchase, leaving a poor review and telling friends of their bad experience. Some words and images work better than others, and so brands optimize towards them. However if memes fully converge on what works, then competitors all end up looking alike, and customers can no longer tell them apart.
The memes that form around a brand come from 3 places:
- Direct experience of the product or service
- Word of mouth
- Advertising & PR
There are the memes the company wishes upon its customers, and the ones that come from the reality of the product experience as well as the perceptions of others. Branding is the act of strategically building the right associations in consumer’s brains. Everything from packaging and website design to PR and advertising can act in concert to reinforce these memory structures for when it’s time to buy. If you do it right, the customer won’t even consider anyone else. You’ll have earned what Warren Buffet calls “share of mind”.
Survival of the Fittest
When two brands occupy the same niche, the stronger competitor inevitably prevails. To survive, smaller brands must segment the market and differentiate their positioning. For example craft breweries differentiating on taste to escape extinction at the hands of the mega-breweries. They must use different memes to their competitors – colors, phrases, features, attributes, properties – that resonate better with the target audience but can’t easily be copied. It’s important to have a map of what memes are being used by competitors so you know where to match your opponents and when to do something different. “When the world zigs, zag”
Most marketers go by gut feel when defining their brand strategy. Instead you should systematically collect examples of campaigns in your industry in a swipe file, so you’re exposed to a wider selection of memes than being limited to your personal experience. Once enough samples are collected, you can systematically code the memes with tags to spot patterns, and decide more strategically what to imitate or differentiate on, before testing what works (or doesn’t). Ultimately you make the call on what memes to copy, and where to innovate, but it pays to do a wider grid search than your competitors.
Meme Mapping in the Wild: James Clear, Atomic Habits
In his interview with Tim Ferris, James Clear the bestselling author of Atomic Habits, revealed his process for picking a book title. He didn’t call it ‘meme mapping’, (of course, because that’s a phrase I made up), but it serves as a useful and instructional example of how it works.
He spoke of how he spent time meticulously deconstructing bestsellers, to see what they had in common that worse performing books didn’t. For example he found that most best-selling business books were between 180 to 220 pages, which convinced him to cut out 66% of what he had written. One area where this is disproportionally important is with book titles. The title is the first thing anyone reads, so it makes a big difference if you get it right.
In order to choose a title, he compiled a list of 150 non-fiction books that had sold over 1 million copies, and got to work looking for patterns. One proven format he started to notice was “The blank of blank”, for example:
- The War of Art
- The Psychology of Money
- The Power of Habit
- The Power of Now
- The Power of Positive Thinking
- The Subtle Art of Not Giving a Fuck
- The Life-Changing Magic of Tidying Up
Successful authors would take their topic and put that second, then pair it with a word its not normally combined with. For example, “tidying up” is not normally described as “life-changing”, and “not giving a fuck” isn’t associated with being “subtle”.
Clear ultimately went for another common and closely-related format: just a single word topic and an unexpected descriptor right before it. Atomic Habits is another in a long line of successful examples from Jocko Willink’s Extreme Ownership and Cal Newport’s Deep Work.
James Clear is an accomplished writer, and his choice of title wasn’t the only thing that made his book a success. However if you’re already putting in all of the effort to write a book that’s good enough to be a best seller, shouldn’t you be taking the choice of title as serious as Clear did? Even if you go in a different direction, it’s still useful to have a map of the territory.
Meme Mapping Process
1. Build a Swipefile
Swipefiles have been popular since the 1960s, the golden age of advertising, when copywriters clipped copies of ads they liked and stored them in a file for later when they needed inspiration. With modern note taking apps this is a far easier and more accessible practice today. You’ll need to choose a source of competitor information, for example IMDB for movie posters, the Facebook Ad Library for competitor ads, or just the content of your competitors homepages.
Example: We’re trying promote our rental property in Miami, so we create a swipefile in a Notion database to collect screenshots of all the popular Airbnb listings in the area.
2. Tag Memes
Inductive coding is a process for tagging text and images with consistent labels that can be compared to find patterns. Start by selecting a small sample (10%) of the assets you collected in your swipefile, and create codes (labels) that will cover the sample. Too many categories makes comparison impossible, so start broad (’quality’, ‘cost’, ‘location’) – you can always drill down later. Select a new sample and apply your codes, adding new ones or consolidating where useful.
Example: We run through our swipefile and tag each listing if the main image shows a “bed”, “living room” or the “beach”, to determine what image to use for our listing.
3. Identify Patterns
The most valuable insights come from unstructured data — the patterns emerging that weren’t on your radar, are the most important to see. Once you’ve categorized your swipefile, start drawing conclusions and looking for opportunities. Combine your meme tags with performance data (if available) to see what correlates with success. What memes appeared most and least often? Are there opportunities for superior performance? Any memes you should avoid?
Example: Recording the number of reviews gives us a proxy for performance. We find listings tagged as “living room” have half as many reviews on average.
4. Test Creatives
Categorize your ideas into concepts, themes, or variants, then test concepts first (product features, value propositions, category entry points), to find signal. Once you have a concept that works, drill down into different themes (subject of image, artistic styles, adcopy routes) until you find a winner. Extend the life of your creative by experimenting with small variations (border colors, similar photos, rephrasing of words), until you reach saturation, then start the loop over again.
Example: We first test “bedroom” vs “beach”. Then we try different beach shots to find a winner. Within the “volleyball” theme there are more variants for further testing.
Advanced Meme Mapping
We used a simple example of an Airbnb rental property in Miami, but you can build on the complexity from there. We only mapped the main image of the listing to 3 memes, but we could add more tags based on what was in the image, including the colors, objects in the image and common design elements. You can probably already identify patterns in what words and phrases are used in the listings (’modern’, ‘X mins/blocks to the beach’, ‘parking’), and we could use those insights in creating our listing. Ultimately every part of the assets in your swipefile can be deconstructed into their component parts to learn more about what makes them tick.
The patterns we spot are a function of how much data we have, so it would make sense to expand our search to more than the first page of listings. There are also other data sources, for example other vacation rental sites, search engine results and social media posts which might surface more insights we can use for optimizing our brand. We can use web scraping and APIs to access both pubic and private data at scale, increasing the surface area that we cover, and maximizing our chances of finding unique insights.
Typically meme mapping works best when there are a lot of examples to work from, like with our Airbnb listings. If you don’t have enough examples of competitive products your meme labels will be too sparse and you won’t spot many trends. If your product category only has a handful of competitors, it can be helpful to look at trends in an adjacent category, or transfer styles from an entirely different industry that your target audience values.
It can also be fruitful to look for memes that work well in specific combinations, or memeplexes, even if they don’t perform in isolation. Scaling up the number of tags through automation with machine learning algorithms and APIs like GPT-3 or Google Vision can help in this endeavour. If you have relative performance data you can also use statistical techniques like linear regression analysis to estimate the relative impact of each meme on performance.
If you can’t get performance data to join with your meme tags don’t despair – the frequency with which a meme appears is often a good enough proxy, presuming your competitors know what they’re doing. In any event this activity should be used for hypothesis building: all insights should be validated through creative testing. Ultimately your meme map is only a guide: it can tell you the lay of the land, but you have to chart your own course.